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Abstract

An Euler solver based on the method of space-time conservation element and

solution element is used in this paper to simulate shock-tube flows involving shock

waves, contact discontinuities, expansion waves and their intersections. Seven test

problems are considered to examine the capability of this method. The numerical

results, when compared with exact solutions and/or numerical solutions by other

methods, indicate that the present method can accurately resolve strong shock and

contact discontinuities without using any ad hoc techniques which are used only at

the neighborhood of a discontinuity.



Introduction _,_

The method of space-time conservation element and solution element ( to be ab-

breviated later as the CE/SE method) is a numerical method developed recently

by Chang[l] for solving conservation laws governing the motion of fluids. This

new method differs substantially in both concept and methodology from the well-

established traditional methods such as the finite difference, finite volume, finite el-

ement and spectral methods. It is conceived and designed to overcome some of the

major shortcomings of the traditional methods.

The development of this new method is guided by several basic requirements. They

are: (i) to enforce both local and global flux conservation in space and time with flux
l

evaluation at an interface of two conservation elements being an integral part of the

solution procedure and requiring no interpolation or extrapolation; (ii) to use local

discrete variables such that the set of variables in any one of the numerical equations

to be solved is associated with a set of immediately neighboring solution elements;

(iii) space and time are unified and treated on the same footing; (iv) mesh values of

dependent variables and their derivatives are considered as independent variables to

be solved simultaneously; (v) to minimize numerical diffusion, a numerical analogue

should be constructed, as much as possible, to be compatible with the space-time

invariant properties of the corresponding physical equations; and (vi) to exclude the

use of the characteristics-based techniques, and to avoid the use of ad hoc techniques

as much as possible. It was shown in [1] that the above requirments can be met with

a simple unified numerical framework.

One of the numerical schemes developed in [1] is an Euler solver for solving the one-

dimensional unsteady Euler equations. It was used to obtain accurate flow solutions

involving an infinitely long shock tube.

In this work, the above Euler solver is extended and applied to more complex

flow problems involving shock tubes of finite or infinite length. Shock-tube flows

represent a class of particularly interesting test cases that have exact solutions in

the presence of shock waves, contact discontinuities, expansion fans and even their

reflection and intersection when the tube length is finite. The ability to generate
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numerical algorithms which allow a high resolution of discontinuities, suchas shock

waves and contact discontinuities, without numerical oscillations is an important

requirement of a method sincethe appearanceof such discontinuities is a frequent

and essentialphenomenonof high-speedinviscid flows.

In the following sections,the governingequationsand numerical schemeare first

summarizedfrom [1], which is then followed by a detailed description of eachof the

test cases.

2. Governing Equations

The one-dimensional unsteady Euler equations of a perfect gas can be expressed

as

where

au,,, of,.
at + 0---_-= 0' m=1,2,3

(2.1)

p 1 2
ul = p, u2=pv, u3- +-_pv (2.2)7-1

fl = u2 (2.3)

f2 - ('Y- 1)u3+ 1(3-'_)(u=)2 (2.4)
Ul

_(_ - 1)(u_)_ (2.5)U2U3

A = "r Ul z (ul) 2

with p, v, p and 7 being the density, velocity, static pressure and constant specfic heat

ratio, respectively.

Let xl = x, and x_ = t be considered as the coordinates of a two-dimensional

Euclidean space E2. By using Gauss' divergence theorem in the space-time E_, it can

be shown that Eq. (2.1) is the differential form of the integral conservation law

fs h,,, dg= 0, = 1,2,3.
I m

(v)
(2.6)

here (i) S(V) is the boundary of an arbitrary space-time region V in E2, (ii) dg"= de

with da and if, respectively, being the area and the outward unit normal of a surface

element on S(V), and (iii) h._ = (f,.,,um), m = 1,2,3, are the space-time mass,



momentum,and energycurrent density vectors,respectively.Note that (i) h,_ • dg is

the space-time flux of fh,, leaving the region V through the surface element dg, and

(ii) all mathematical operations can be carried out as though E2 were an ordinary

two-dimensional Euclidean space.

3. Euler Solver

3(a). Marching Schemes for Interior Mesh Points

Let f_ denote the set of mesh points (j,n) in E2 (dots in Fig. l(a)) where n =

0, :kl/2, =kl, ±3/2, ±2, ±5/2,. • -, and, for each n, j = n ± 1/2, n -4- 3/2, n + 5/2,. • -.

There is a solution element (SE) associated with each (j, n) E ft. Let the solution

element SE(j, n) be the interior of the space-time region bounded by a dashed curve

depicted in Fig. l(b). It includes a horizontal line segment, a vertical line segment,

and their immediate neighborhood. For the following discussions, the exact size of

the neighborhood does not matter.

For any (x,t) e SE(j,n), u,_(x,t),f,_(z,t), and hm(x,t) are approximated by

u_,(x,t;j,n), f_,(x,t;j,n), and _,(z,t;j,n), respectively. They will be defined

shortly. Let

• U nu,_(z,t;j,n)=( m)j +(Um_)_(X--Xj)+(Umt)_(t--t _) (3.1)

n U n nwhere (u_)j, ( ,,,x)S and (u,,t)j are constants in SE(j,n). They can be considered as
Ou._ Ou_

the numerical analogues of the values of u,n, _ and T at (xj, t_), respectively.

Let

of_
fm,k = Ouk' m, k = 1, 2, 3 (3.2)

Let (f,_)_' and (f,,,k)_' denote the values of fm and f,,,k, respectively, when urn, m =

i, 2, 3, respectively, assume the values of (u,_)_', m = 1, 2, 3. Let

3

(f_x)'_ = __,(f,-,-,,k)'](Ukx)'_ (3.3)
k=l

and

(f_t)'] = Y]_(f_,k)_(ukt)'_
k=l

(3.4)



It is explained in [1] that (fmx)_' and (fm,)_ can be considered as the numerical
t%#

analogues of the values of _z-z_"_ and o___ at (xj, tn), respectively. As a result, it is

assumed that

Because h,n

f_(x,t;j,n) = (f,,,)') + (f,_)_(x - xj) + (fmt)'_(t- t _)

= (fro, u,n), it is also assumed that

(3.5)

ft_,(x,t;j,n) = (fT_(z,t;j,n),u_(z,t;j,n) ) (3.6)

Note that, by their definitions, (i) (f,_)_' and (f,_,k)_', m = 1,2,3, are functions of

(u,,_)_, m = 1,2,3, (ii) (f,_x)_', m = 1,2,3, are functions of (u,_)_ and (u,_)2, m =

n U n1,2,3, and (iii) (fm,)_ are functions of ( ,,,)j and ( ,_,)j, m = 1,2,3.

Moreover, it is assumed that, for any (x,t) E SE(j,n), Urn = u_(z,t;j,n) and

fm= fT_(x,t;j,n) satisfy (2.1), i.e.,

Ou_(z, t; j, n)

Ot
+Of_(x,t;j,n) =0 (3.7)

Oz

According to (3.1) and (3.5), Eq. (3.7) is equivalent to

( .,,)j -(f,,_)7 (3.8)

U n _Because (fm_)_' are functions of ( ,_)j and (um_)j , Eq. (3.8) implies that (umt)j are

U nalso functions of (um)_ and ( ,_)j. From this result and the facts stated following

U nEq. (3.6),oneconcludesthat ( _,)j, (fm)_',(f_)7 and (f_,)_'are functionsof (_m)7

and (um_)_'. As a result, (um)_ and (u_x)_, m = 1,2,3, are the only independent

discrete variables needed to be solved in the current marching scheme.

The main marching scheme developed in [1] is defined by

u n 1
( "_)J 2 [' ,,,-1/2 , ,,_-_/2 , ,,,-1/2 , ,,_-a/2]= - kU,n)j_l/2 + tU,,,)j+a/2 + (S,,,Jj_I/_ -- tSmJj+I/2 ] (3.9)

and

u n = * " (2e- 1)(du._)_' (3.10)( m_)_ (_)j +



n( r_)j

U n

(u_)7

where e is a parameter that controls numerical diffusion. Also, for all (j, n) E f_:

= ---_-(u,,,_)j + -_xx(f,,, + ._z (f,,,t)'_

/ \n--I/2 / \n-I/2

1 ] _Um]j+l/2 -- _Um}j--1/2[, ,,,-1/2 _ ,,,-1/2
= -2 [(u_)J+_/2 + (u'_:)J-ll2 I -J Ax

I n I ?/.

Z_X

(3.11)

(3.12)

(3.13)

with

, n _ _,_-1/2 Atlu _n-1/2
(u,,,,)j+,/2 = _,um)j+,/2 + _-, ,',',t)j+l/2 (3.14)

Let (i)

n +(_')j%x/_- (_)Y
( ":_+)J = Ax/2 (3.15)

(ii) c_ _ 0 be an adjustable parameter, and (iii) the function Wo be defined by

W0(0,0;a) = 0 (3.16)

and

Wo(x_,x+;,_) = I:_+1°:_-+ lx_l"x+ (Ix+l° + Ix_l_ > o)
Ix+l_+ [x_l_

Then the main scheme can be modified by replacing (u_)_ with

(3.17)

_0 _ n(_)j = w0 [(u__)_, (_m_+)2;_ ] (3._s)

This modification is introduced such that numerical oscillations near a discontinuity

can be suppressed without smearing the discontinuity. It also has the advantage that

the modification has no discernable effect on the smooth part of the solution [1].

3(b). Marching Scheme for Boundary Mesh Points

The marching schemes defined in Sec. 3(a) are applicable only for interior points

(j, n) E ft. The boundary mesh points enter into the picture when shock-tube prob-

lems with closed ends are considered later in the current paper. As a preliminary for

deriving the marching scheme for boundary mesh points, we shall review the concept

of conservation element introduced in [1].
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Let space-timeE2be divided into nonoverlappingrectangular regionsreferred to

asconservationelements(CEs). As depictedin Figs. l(c)-(e), conservationelements

of three different typesenter the current discussion.ConservationelementCE_(j, n)

is associated with a right-boundary mesh point (j, n) 6 ft. Conservation element

CE+(j, n) is associated with a left-boundary mesh point (j, n) 6 f/. Finally, conserva-

tion element CE(j, n) is associated with an interior mesh point. Note that (i) the CEs

associated with all (j, n) 6 f_ fill the entire computation domain, (ii) The boundary

of CE_(j, n) (CE+(j, n)) is formed by the subsets of SE(j, n) and SE(j - 1/2, n- 1/2)

(SE(j + 1/2, n- 1/2)), and (iii) the boundary of CE(j, n) is formed bythe subsets of

SE(j, n), SE(j - 1/2, n - 1/2) and SE(j + 1/2,n- 1/2).

We assumed that (i)

/S(CE(i,n)) _ " dg= 0 (3.19)

for any interior mesh point (j,n) 6 f_, (ii)

s(cs_(j,,)) _'" dE = 0 (3.20)

for any right-boundary mesh point (j, n) 6 f_, and (iii)

/s h_.dg=O (3.21)
(CE+(j,.))

for any left-boundary mesh point (j, n) 6 f_. Equations. (3.19)-(3.21) imply that,

for m = 1, 2, 3, the total flux leaving the boundary of any conservation element is

zero. Moreover, because the flux at any interface separating two neighboring CEs is

calculated using the information from a single SE, the local conservation conditions

Eqs. (3.19)-(3.21) will lead to a global conservation relation, i.e., the total flux leaving

the boundary of any space-time region that is the union of any combination of CEs

will also vanish.

With the aid of Eqs. (4.24) and (4.25) in [1], Eqs. (3.19)-(3.21) imply, respectively',

(i) Eq. (3.9), which is valid for an interior mesh point (j,n) • ft, (ii)

Az At
(A4_x2 lure)j_1�2 + v'mlj-a/2(u,_:)j'_ + _--_x(fm)_ (f_,)_' + (u_)_ =' ,,_-1/2 /o ,_n-1/2 (3.22)



where (j,n) is a right-boundary meshpoint C _, and (iii)

where (j, n) is a left-boundary mesh point E ft.

, ,,-,/2 , ,,_-,/2 (3.23)= tum}j+l/2 - tsm)j+l/2

Equation (3.9) is a part of the

marching schemes defined in Sec. 3(a). Note that derivation of Eq. (3.10) or its

modified version involves considerations other than flux conservation. The marching

schemes for boundary mesh points will be derived using Eqs. (3.22) and (3.23), and

the appropriate boundary conditions to be imposed.

It is assumed that, for all t > 0,

op op
v=0, 0--_=0, _-_z=0 (3.24)

at a closed end. Using Eqs. (2.1)-(2.5) and (3.24), one has

and

u2=0, fl=f3=0, f2=(3'-l)u3

of 1 of 3
o--7=-g/- = 0,

OUl

Oz

OU2U3m =Of 2 -3'('_ - 1)
Ot ul Ox

(3.25)

(3.26)

OU3

0 (3.27)
-- 0X --

at a closed end. It is assumed that the numerical analogues of Eqs. (3.25)-(3.27) are

also valid, i.e.,

and

n U n(u2)j = 0, (fx)_' = (f3)_ = 0, (f2)_' = (3'- 1)( 3)j

(f,t)') -- (f3t)') = O, (f2t)7 -- -"7('7- 1)(u31u_)'](u2:)7

for any boundary mesh point (j, n).

(_,1:)7= (<<_:)7= o

n UHere (_3/=1)7= (=3)j/( 1)"3"

(3.2s)

(3.29)

(3.30)

Combining Eqs.

(3.22), (3.23) and (3.28)-(3.30), one obtains the marching scheme for boundary mesh

points, i.e., (i)

I [ \n-I/2

u n tum}j-ll 2( ,_)j =

i \n-l/2
+ ts,_)j_l/_ for rn = 1, 3

(3.31)
0 for m =2



and

fu _-1/2. t s x_-1/2 At, u

,. ,.,.,,j_,/; -1- t ,',Oj-,/2 - _"-_xl,"f- 1)( 3)./

( _')i = _'_('T- 1)(u31ul)j 4

0

for m=2

for m= 1,3

where (j,n)is a right-boundary mesh point, and (ii)

I ,,n--l/2 / ,,n--l/2

{tim _n. -_ _'UmJj+l/2 -- kSm)j+l/2
k ]3

0

for m=l,3

for m=2

and

"_n-112 I \n-112 /_t n

umJj+,/2-- tSmJj+,/2+ -- 1)(u3b

(At)_ ' u " Ax
1)(u3/ lb +
0

for m -- 2

form= 1,3

where (j, n) is a left-boundary mesh point.

4. Test Problems and discussions

(3.32)

(3.33)

(3.34)

To evaluate the accuracy of the numerical schemes described in the previous sec-

tions, the numerical results of seven shock-tube problems are compared with their

exact solutions and/or numerical solutions obtained using upwind methods. The

shock tubes considered in these experiments are either extended to infinity or hav-

ing one or two dosed ends, 7 = 1.4, and a constant value of e = 0.5 is used for all

computations.

Infinitely Long Shock Tubes

Some of the shock-tube problems presented in [3] are solved again here using the

present CE/SE Euler solver. In these problems, the shock tube is assumed to be

long enough to avoid the reflection of discontinuities. The numerical results are com-

pared to both the exact solutions, plotted using solid lines, and numerical solutions

presented in [3].



In the following four problems,thespaceregion [-1,1],unlessspecifiedotherwise,

is always subdivided into 100 intervals with Ax = 0.02, while the size of At varies

depending on the CFL number chosen for each problem. The CFL number is defined
At

as _--_-(]v[ + C)ma_ where c = V/"_/p is the speed of sound. It is evaluated using the

known exact solution. Generally the stability condition is CFL< 1 [1].

A. Strong Shock Waves Propagating in Opposite Directions

The initial conditions at t=0 are:

/ (0.1, 0.1, 15)
(p,p,M) [ (0.1, 0.1,--15)

where M = v/c.

forx < 0
(4.1)

forx >0

Two CE/SE solutions at t = 100At are presented in Figs. 2 and 3. Note that,

except in the neighborhood of x = 0, these solutions agree almost perfectly with the

exact solutions, indicating that the oscillations can be suppressed by increasing the

value of a.

In [3], numerical solutions to the above test problem were generated using four

upwind schemes. The first is the AUSM (Advection Upstream Splitting Method)

scheme. The second is the AUSMV scheme, a flux-Vector-splitting-biased modifi-

cation bf the AUSM scheme. The third is the AUSMD scheme, a flux-Difference-

splitting-biased modification of the AUSM scheme. The last is the AUSMDV

scheme which is a mixture of the AUSMV and AUSMD schemes. The values of

T(temperature), p and p generated using the above four methods (t = 100At, Ax =

0.02 and CFL- 1.0), respectively, are plotted against x in Figs. 2(a)-(d) of [3]. Note

that T, p and p are related by the perfect gas law.

The AUSM solution is the worst. Its values of T fluctuate violently throughout

the interval bounded by two shock discontinuities. The maximum deviation (- 12)

from the exact solution occurs at x = 0. There are also serious overshoots (of T

and p) near shock discontinuities. The AUSMD solution is only slightly better. The

AUSMV and AUSMDV solutions are much better. Nevertheless, both have a sharp

temperature overshoot at x = 0. From the above observations and other comparisons,
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onemay concludethat the CE/SE method is (i) more accuratein shockresolution,

and (ii) more capableof preventinga large temperatureovershootat x = 0, than any

one of the above four upwind schemes.

B. Slowly Moving Contact Surface

The initial conditions at t=0 are:

f (0.125, 1.0, 0.3× 0v/'0-_.14)
(p,p,v)

(10.0, 1.0, 0.3x 0v/'_.14)

Note that c = _/[-_/p = _ for x > 0.

for x<0
(4.2)

for x>0

The CE/SE solution at t = 130At is depicted in Fig. 4. Two solutions at t =

130At for the same test problem obtained using the AUSMD and AUSMV schemes

(CFL= 0.75, and Ax = 1/15) are depicted in Figs. 3(a) and 3(5) of [3], respectively.

The AUSMD solution is comparable to the CE/SE solution in accuracy. However, the

values of v in the AUSMV solution has a serious oscillation problem in the interval

(-1,0).

C. Sod's Problem

Sod's problem is solved again in order to compare the CE/SE solution with other

solutions presented in [3]. At t = 0, we have

(1.0, 1.0, O) for x < 0 (4.3)(p,p, v)= (0.125, 0.1, 0) for x > 0

The CE/SE solution at t = 50At is plotted in Fig. 5. The solution at t = 50At

for the same test problem obtained using the AUSMDV, AUSM and Roe schemes

(CFL=I.0 and Ax = 0.02) axe presented in Figs. ll(a)-(c) of [3], respectively. For

each of the above three schemes, it requires about 15 mesh intervals to resolve the

contact discontinuity and 2-3 mesh intervals to resolve the shock discontinuity. On

the other hand, the CE/SE method requires only 4-5 mesh intervals and 1 mesh

interval, respectively, to resolve the contact and shock discontinuities. Moreover, the
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numerical errors of the CE/SE solution in the smooth-solutionregions are also less

than thoseassociatedwith other three solutions.

D. Strong ExpansionFans

The initial conditions at t=0 are:

(1.0, 2.0, -2.5× 2v/2_.8) for x < 0 (4.4)(p,p,v) = (1.0, 0.5, 2.5x v/'_.8) for x > 0

c= _ = _ for z <Note that 0.

Assuming CFL=I.0 and Ax = 0.02, the numerical values of p, p and T at t =

30At = 0.1025 for the above test problem obtained using the AUSMDV, Godunov

and HILE schemes, respectively, are presented in Figs. 12(a)-(c) in [3]. Because the

CE/SE solver with e = 0.5, a = 1 and Ax = 0.02 is not stable at CFL=I.0, a direct

comparison of the CE/SE method with the above three schemes can not be made.

Instead, assuming e = 0.5, a = 1 and Ax = 0.02, we reach for the largest At (i.e., the

largest CFL because Ax = 0.02 and ([v 1+c)_ax = 5.8566 are known) such that (i) the

CE/SE solver is stable, (ii) nat = 0.1 where n is an interger, and (iii) the numerical

solution at t = 0.1 is such that p > 0 and T > 0 at all mesh points. Note that

p < 10 -3 in the neighborhood of x = 0.16. As a result, a numerical undershoot could

cause p to become negative. It is found that At = 1/550 (corresponding to n = 55 and

CFL=0.532) satisfies the above requirements. The corresponding solution is plotted

in Fig. 6.

By comparing the CE/SE solution with the Godunov solution which is depicted

in Fig. 7, it becomes obvious that the former are far more accurate than the latter.

The Godunov's values of T deviate substantially from the exact values in the interval

(-0.5, 0.5). The Godunov's values of p also suffer the same order of error percentage-

wise aRhough it is difficult to see because the value of p are very small in the same

interval. The numerical errors associated with the AUSMDV solution are similar to

those of Godunov's solution while the HILE scheme produces even worse results.

In general, the comparison with both the exact and other upwind solutions in

this part shows that the current CE/SE Euler scheme can generate highly accurate
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shock-tube solutions. Having demonstrated the Euler solver's robust capability of

capturing shock and contact discontinuitiesas well as simulating expansionwaves,

we are proceedingin the following to extend its application to study the end effects

on shock-tubeflows.

Test Problems Taken from Ref. 4

In this part, more complex shock-tube problems involving the reflection and in-

tersection of shock waves, expansion waves and contact discontinuities are solved by

use of the present Euler solver. The following three test cases axe taken from [4]

where the exact solutions are 'also given. The results presented here are obtained

with CFL=0.82 in all three cases, whereas the value of Ax is 0.1 in cases E and F

but is changed to 0.01 in case G for a more detailed description of the flow.

E. Shock Tube With a Closed End

Consider a strong shock wave traveling at M=4.6 in a constant-area duct filled

with air [4, pp.143-144]. When the shock reaches the closed end on the right, it will

reflect as described in Fig. 8.

Let the closed end be located at x = 3.5, and the initial conditions at t=0 be

given as

/ (24.52, 4.852, 4.321) for x < 0 (4.5)(p,p,v)

[ (1.0, 1.0, 0) for x > 0

Figures 9 and 10 show respectively the results at t-0.5 when the incident shock

moves to the right toward the closed end, and at t=l.5 after the shock wave has been

reflected and reversed its direction. Other than a slightly lower density observed near

the closed end in the reflected wave, the CE/SE solution has excellent agreement with

the exact solution at both t = 0.5 and t -- 1.5.

F. Merging of Two Shock Waves

With reference to Fig. 11, consider two shock waves propagating to the right in

an infinitely long tube with a strong shock of M = 3.0 behind a weaker shock of

M = 1.5 [4, pp.131-134].
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Let the initial conditions at t=0 be ....

(25.41,7.189,3.842) for z < -1.5
(p,p,v) = (2.460, 1.863, 0.821) for -1.5 < z < 2.6 (4.6)

(1.0, 1.0, 0.0) for x > 2.6

The computed results at t=l.0, 1.25 and 1.75 are shown in Figs. 12-14 in favorable

comparison with the exact solution. These two shock waves remain separated before

t=1.25. At t=1.25, the faster shock catches up with the slower shock ahead and

merging of the two waves begins. As a result of merging, a shock wave stronger than

the original faster shock is created and is propagating to the right at a higher speed,

leaving behind it a contact surface and a left-moving expansion fan wave, as shown

in the plot of Fig. 15 at t=1.75.

G. Shock Tube With Two Closed Ends

This shock tube problem depicted in Fig. 15 constitutes of reflection of shock wave

and expansion wave and the intersection of the reflected waves and contact surface.

The tube has closed ends at x=0 and x=l, respectively. At t=0, a diaphragm located

at x=0.25 separating two gases at different conditions is bursted [4, pp.205-208].

With the initial conditions that

/ (20.0, 20.0, 0.0) for x < 0.25 (4.7)(p,p,v)

t (1.0, 1.0, 0.0) for x > 0.25

the break of the diaphragm creates a shock wave and an expansion wave separated

by a contact surface.

The calculation is carried out for a period that is long enough to show successive

reflection and intersection of shock wave, expansion wave and contact surface. When

t= 0.09, waves have not yet reached the ends as shown in Fig. 15. When t=0.3,

the left-moving expansion waves have been reflected from the left end but the right-

moving shock wavehas not . At t=0.4, the shock wave has already completed its

reflection from the right end and the reflected shock wave is moving to the left. This
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reflected shockis intersectingwith the right-moving contact surface to create a left-

moving transmitted shock, a right-moving contact surface and a right-moving shock

wave which, when reaching the right end, is reflected again. At t=0.585, there exist in

the flow field two shock waves, one contact surface and a region of expansion waves.

Numerical results plotted in Figs. 16--19 correctly display the aforementioned flow

phenomena at those four time instants.

The excellent agreement in all cases demonstrates the ability of the CE/SE scheme

to accurately capture weak and strong waves and discontinuities even in the presence

of their reflections and intersections. It again verifies the robustness of this scheme.

5. Conclusion

The Space-Time Conservation Element and Solution Element method has been

applied to solve the Euler equations. Seven numerical examples on one-dimensional

shock-tube flows have been used to demonstrate not only the advantages of simplic-

ity, accuracy and generality of this method, but also its ability of achieving high

resolution of discontinuities even in the presence of wave intersections and reflections

without any ad hoc techniques. It shows that the CE/SE method is a powerful tool

of high potential for solving general fluid dynamic problems. Under investigation is

the extension of this method to tackle flow problems of higher dimensions.
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Fig. 4
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Fig. 7 The Godunov solution for case D at t=0.I025
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Fig. 8 Shock reflection from a closed end
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Fig. 11 Merging of two shock waves

t=1.75

t=1.25

t=l.O

Reflected
Interface

waves / Resultant shock

\\4

Merging/

shocks
X

y

27



Fig.

8
7

6

_5
m 4

3

2

1

0

-3

12 The CE/SE solutionfor case F at t=1.0

(CZL=O.OZ,AX=0.1,a=3)
| • - . i - . . i - . . i - . . i - . . i - . . i - . . i - . . g - . . i - . .

i

. ,I

. . . I . . . | . . . I . . . | . . . ! ...............

-2 -1 0 1 2 3 4 5 6

X

7

5

3

o i

...... ! .............................................. 10

...i...I...I...W...l-..l...l...f.aa|Oll t

-2 -1 0 1 2 3 4 5 6 7

X

W
m

27

24

21

18

15

12

9

6

3

0

-3 -2 -1 0 1 2 3 4 5 6

X

7

28



Fig. 13 The CE/SE solution for case F at t=1.25

(CFL=0.82,AX=0.1,a=3)
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Fig. 15 Shock tube with two closed ends
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Fig. 16 The CE/SE solution for case (Iat t=O.09
(c =o.8z,  =O.Ol, ==z)
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Fig. 17 The CE/SE solution for c_se G at t=0.3

(cF .=o.82.ax=o.ol,a=2)
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Fig. 18 The CE/SE solution for case G at t=0.4

(CFL=0.82, _=0.01, a=2)
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Fig. 19 The CE/SE solution for case G at t=0.585

(czL=o.sz,Ax=o.ol,a=2)
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